Cologne city shown as colorized 3D point cloud (data source: openNRW Germany)In order to simplify the installation of the latest PDAL release (Point Data Abstraction Library, https://pdal.io/, version 1.7.0 1.7.2) on Fedora, I have created an updated set of RPM packages, again including the vertical datums and grids available from OSGeo (i.e., .gtx files from here).

The installation is as simple as this (the repository is located at Fedora’s COPR):

# enable extra repos to satisfy dependencies
sudo dnf copr enable neteler/pdal-hexer
sudo dnf copr enable neteler/points2grid
sudo dnf copr enable neteler/laszip

# install minimal dependencies
sudo dnf install hexer
sudo dnf install points2grid

# enable and install PDAL
sudo dnf copr enable neteler/pdal
sudo dnf install PDAL PDAL-vdatums

# run it
pdal-config --version
pdal --help

Enjoy!

Cologne city shown as colorized 3D point cloud (data source: openNRW Germany)In order to simplify the installation of the latest PDAL release (Point Data Abstraction Library, https://www.pdal.io/, version 1.6.0) on Fedora, I have created an updated set of RPM packages now including vertical datums and grids (.gtx files from here).

The installation is as simple as this (the repository is located at Fedora’s COPR):

# enable extra repos to satisfy dependencies
sudo dnf copr enable neteler/pdal-hexer
sudo dnf copr enable neteler/points2grid

# install dependencies
sudo dnf install hexer
sudo dnf install points2grid

# enable and install PDAL
sudo dnf copr enable neteler/pdal
sudo dnf install PDAL PDAL-devel PDAL-vdatums

# run PDAL:
pdal-config --version
pdal --help

Enjoy!

banner_lidar

[toc]

LiDAR point cloud data are commonly delivered in the ASPRS LAS format. The format is supported by libLAS, a BSD-licensed C++ library for reading/writing these data. GRASS GIS 7 supports the LAS format directly when built against libLAS (as the case for most binary packages being available for download).

In this exercise we will import a sample LAS data set covering a tiny area close to Raleigh, NC (USA), belonging to the North Carolina sample data set. Sample LAS data download: https://grass.osgeo.org/sampledata/north_carolina/  (25MB).

For a full exercise, we will, however, assume that no GRASS GIS location is ready so far (so: newbies are welcome!) and create a new one initially.

1. Having the LAS file: now what?

In the first place, check the metadata of the LAS file using the lasinfo command (comes with libLAS; here only parts of the output shown):

lasinfo points.las
---------------------------------------------------------
  Header Summary
---------------------------------------------------------
  Version:  1.2
  Source ID:  0
  Reserved:  0
  Project ID/GUID:  '00000000-0000-0000-0000-000000000000'
  System ID:  'libLAS'
  Generating Software:  'libLAS 1.2'
[...]
  Spatial Reference:
None
[...]
---------------------------------------------------------
  Point Inspection Summary
---------------------------------------------------------
  Header Point Count: 1287775
  Actual Point Count: 1287775

  Minimum and Maximum Attributes (min,max)
---------------------------------------------------------
  Min X, Y, Z:   6066629.86, 2190053.45, -3.60
  Max X, Y, Z:   6070237.92, 2193507.74, 906.00
  Bounding Box:  6066629.86, 2190053.45, 6070237.92, 2193507.74
  Time:  0.000000, 0.000000
  Return Number:  1, 3
  Return Count:  1, 7
  Flightline Edge:  0, 0
  Intensity:  0, 256
  Scan Direction Flag:  0, 0
  Scan Angle Rank:  0, 0
  Classification:  2, 7
  Point Source Id:  0, 0
  User Data:  0, 0
  Minimum Color (RGB):  0 0 0 
  Maximum Color (RGB):  0 0 0 

  Number of Points by Return
---------------------------------------------------------
  (1) 1225886  (2) 61430  (3) 459

  Number of Returns by Pulse
---------------------------------------------------------
  (1) 30877  (2) 153  (5) 1225886  (6) 30706  (7) 153

  Point Classifications
---------------------------------------------------------
  647337 Ground (2) 
  639673 Low Vegetation (3) 
  740 Building (6) 
  25 Low Point (noise) (7) 
  -------------------------------------------------------
  0 withheld
  0 keypoint
  0 synthetic
  -------------------------------------------------------

We see: no spatial reference system indicated!
Luckily we know from here that the projection is  NAD83(HARN) / North Carolina, LCC 2SP metric, EPSG code 3358). Furthermore we see:

  • Number of Points by Return: 3 (i.e., first, mid, last)
  • Point Classifications: the points are already classified as “Ground” (class 2),  “Low Vegetation” (3),  “Building” (6), and Low Point (noise) (class 7). Something to play with later.

Time to create a GRASS GIS location and import the LAS file.

2. Creating a GRASS GIS location for the LAS file

Since we know the EPSG code of the projection, that’s an easy task. Please note that GRASS GIS can generate locations directly from SHAPE files (with .prj file), GeoTIFF and more.

We fire up GRASS GIS 7 and open the Location Wizard:

grass7_startup

In the Location Wizard, we first define a name for the new location:

grass7_loc_wizard1

We select the “EPSG code” method for creating a new location:

grass7_loc_wizard2

You can search for “North Carolina” and select the EPSG code 3358 from the list:

grass7_loc_wizard3

Next summary should show up as follows (be sure to have the metric projection shown!):

grass7_loc_wizard4

With “Finish” you reach this notification (indeed, nothing to change! It is already fine):

grass7_loc_wizard5

Since we want to import the LAS file, no need to manually define any region extent here – just say “No”:

grass7_loc_wizard6

While we could import the data also into the PERMANENT mapset, we prefer to create an own mapset “lasdata” for our LAS data (once you reach hundreds of maps to manage, you will be happy about the concept of mapsets):

grass7_loc_wizard7

Voilà, we get back to the initial startup screen and can now start our GRASS GIS session with our “nc_nad83_lcc” location and “lasdata” mapset within the location: “Start GRASS”!

grass7_loc_wizard8

3. Import of the LAS file

When creating a new location from a GeoTIFF or SHAPE file (or other GDAL supported format), then the data set is imported right away. This is not the case for LAS files, also due to the fact that we can directly apply binning statistics during import of the LAS file (e.g. percentiles, min or max) and create a raster surface from the points right away rather than importing them as vector points.

3. a) Creating a raster surface from LAS during import

The LAS import into a raster surface is available through r.in.lidar:

grass7_las_import1

First the LAS file needs to be selected and an output file name specified (in this example, we want to extract the 95th percentile as binning method, hence a reasonable map name):

grass7_las_import2

In the “Statistic” tab, we select the “percentile” method along with 95 as value:

grass7_las_import3

In the “Optional” tab we activate to extend the computational region from the LAS file and, since the spatial reference system metadata are lacking from the LAS file, also “override dataset projection” to use that predefined in the location. Finally, we define 5m as desired raster resolution for the resulting raster map:

grass7_las_import4

Upon conpletion of the import/binning, the new raster elevation map is shown after zooming to the map (r.in.lidar -e … restores upon completion the previous region settings, hence we may have to zoom):

grass7_las_import5

Now we can start to analyze or visually explore the imported LAS file.

4. Visual LiDAR data exploration

Using the wxNVIZ 3D viewer, we can easily fly through the new DEM. Switch in the Map Display to “3D view” (1). Note that the default rendering is initially done at low visual resolution for speed reasons. You can switch to “Rotate mode” as well to easily navigate with the mouse. In the “Data” tab (2) you can increase the visual resolution (3) to obtain a crisp view:

grass7_las_viz1

 

Now all kinds of analysis steps may follow.

Outlook

For true LiDAR processing as points, see the following GRASS GIS 7 modules: v.in.lidar (for point import), v.lidar.correction, v.lidar.edgedetection, v.lidar.growing, v.outlier, and v.surf.bspline.

In my presentation I briefly review 3 decades of Open Source GIS development, from the 1980th to the present.

See my slides:

Scaling up globally: 30 years of FOSS4G development. Keynote at FOSS4G-CEE 2013, Romania by Markus Neteler

 

Presentation file: Download presentation file (ODP) to get all the clickable links working!

After getting mad with Lidar points colorizing which till now
required a DB table with GRASSRGB attributes, I have
modified d.vect to support colors directly from z height (geometry).
Works for 3D points, lines (eg, 3D contours) and 3D polygons
(eg delaunay triangles):

# Spearfish:
g.region rast=elevation.10m
r.random elevation.10m n=5000 vector=random3d -d
d.mon x0
# display as black points
d.vect random3d
# display 3D points colorized according to z height
d.vect -z random3d zcol=gyr

# 3D contour lines
r.contour elevation.10m out=contour20m step=20
d.vect -z contour20m zcol=gyr

# generate 3D triangles
v.delaunay random3d out=random3d_del
# display 3D polygons colorized according to z height
d.vect -z random3d_del type=area zcol=gyr

Enjoy,
Markus