Get vector map extent


You can easily grep the map extent of a vector map (bounding box):

ogrinfo /cdrom/ITALY_GC.SHP ITALY_GC | grep Extent
Extent: (9.299460, 43.787362) – (13.911350, 47.070188)

Merge of two SHAPE files

Merge of two SHAPE files ‘file1.shp’ and ‘file2.shp’ into a new file ‘file_merged.shp’ is performed like this:

ogr2ogr file_merged.shp file1.shp
ogr2ogr -update -append file_merged.shp file2.shp -nln file_merged file2

The second command is opening file_merged.shp in update mode, and trying to find existing layers and append the features being copied. The -nln option sets the name of the layer to be copied to.

Vector map reprojection

We reproject from the source projection (as defined in .prj file) to WGS84/LL:

ogr2ogr vmap0rd_ll.shp -t_srs “EPSG:4326” vmap0rd.shp

If the .prj file is missing, you can use the ‘epsg_tr.py’ utility to create it if you know the EPSG code:

epsg_tr.py -wkt 4326 > cities.prj

Reproject to current GRASS location projection:

ogr2ogr -t_srs “`g.proj -wf`” polbnda_italy_GB_ovest.shp polbnda_italy_LL.shp

Cut out a piece of a vector map
Use spatial query extents: -spat xmin ymin xmax ymax (W S E N)

ogr2ogr ARC_BZ.shp -spat 10 45 13 47 ARC.shp

Get VMAP0 metadata info:

ogrinfo -ro gltp:/vrf/grass0/warmerdam/v0soa/vmaplv0/soamafr
ogrinfo -ro gltp:/vrf/grass0/warmerdam/v0soa/vmaplv0/soamafr | grep bnd
ogrinfo -ro gltp:/vrf/grass0/warmerdam/v0soa/vmaplv0/soamafr ‘polbnda@bnd(*)_area’
ogrinfo -ro gltp:/vrf/grass0/warmerdam/v0eur/vmaplv0/eurnasia ‘roadl@trans(*)_line’

MAP0: Extract spatial subregion, reproject from NAD83 to WGS84

# coordinate order: W S E N
ogr2ogr -spat 19.95035 -26.94755 29.42989 -17.72624 -t_srs ‘EPSG:4326’ \
polbnda_botswana.shp gltp:/vrf/grass0/warmerdam/v0soa/vmaplv0/soamafr \
‘polbnda@bnd(*)_area’

OGR and SQL

Sample ‘where’ statements (use -sql for PostgreSQL driver):

# -where ‘fac_id in (195,196)’
# -where ‘fac_id = 195’
ogrinfo -ro -where ‘fac_id in (195,196)’ \
gltp:/vrf/grass0/warmerdam/v0soa/vmaplv0/soamafr ‘polbnda@bnd(*)_area’

VMAP0 examples

Find out the Countries VMAP0 coding:

ogdi_info -u gltp:/vrf/grass0/warmerdam/v0soa/vmaplv0/soamafr \
-l ‘polbnda@bnd(*)_area’ -f area | grep Botswana

or read the VMAP0 Military specs, page 75

Extract Botswana, reproject on the fly from NAD83 to WGS84, store as SHAPE:

ogr2ogr -t_srs “EPSG:4326” -where “na2 = ‘BC'” polbnda_botswana.shp \
gltp:/vrf/grass0/warmerdam/v0soa/vmaplv0/soamafr ‘polbnda@bnd(*)_area’

Extract Germany, reproject on the fly from NAD83 to WGS84, store as SHAPE:

ogr2ogr -t_srs “EPSG:4326” -where “na2 = ‘GM'” polbnda_germany.shp
gltp:/vrf/grass0/warmerdam/v0eur/vmaplv0/eurnasia ‘polbnda@bnd(*)_area’
ogrinfo -summary polbnda_germany.shp polbnda_germany | grep Extent
# Extent: (5.865639, 47.275776) – (15.039889, 55.055637)
# W S E N

VMAP0 Contour lines for Germany:

ogr2ogr -t_srs “EPSG:4326” -spat 5.865639 47.275776 15.039889 55.055637 \
contour_lines.shp \
gltp:/vrf/grass0/warmerdam/v0eur/vmaplv0/eurnasia ‘contourl@elev(*)_line’

VMAP0 elevation spots (points) for Germany:

ogr2ogr -t_srs “EPSG:4326” -spat 5.865639 47.275776 15.039889 55.055637 \
elevation_spots.shp \
gltp:/vrf/grass0/warmerdam/v0eur/vmaplv0/eurnasia ‘elevp@elev(*)_point’

VMAP0 lakes of Trentino province in Italy:

ogr2ogr -t_srs “EPSG:4326” -where “na2 = ‘IT'” \
-spat 10.340029 45.261888 10.98727 45.98993 \
lakes_italy.shp \
gltp:/vrf/grass0/warmerdam/v0eur/vmaplv0/eurnasia ‘inwatera@hydro(*)_area’

Connect OGR and PostgreSQL/PostGIS

ogrinfo PG:’host=grass.itc.it user=postgres dbname=ogc_simple’
ogr2ogr out.shape PG:’host=grass.itc.it user=postgres dbname=ogc_simple’ lake_geom

GRASS 6 and OGR

Convert GRASS 6 vector map to SHAPE (needs GDAL-OGR-GRASS plugin):

# -nln is “new layer name” for the result:
ogr2ogr archsites.shp grassdata/spearfish60/PERMANENT/vector/archsites/head 1 \
-nln archsites

Using WKT files with ogr2ogr

The definition is in ESRI WKT format. If you save it to a text file called out.wkt you can do the following in a translation to reproject input latlong points to this coordinate system:

ogr2ogr -s_srs WGS84 -t_srs ESRI::out.wkt out_dir indatasource

Most comand line options for GDAL/OGR tools that accept a coordinate system will allow you to give the name of a file containing WKT. And if you prefix the filename with ESRI:: the library will interprete the WKT as being ESRI WKT and convert to “standard” format accordingly. The -s_srs switch is assigning a source coordinate system to your input data (in case it didn’t have this properly defined already), and the -t_srs is defining a target coordinate system to reproject to.

TIGER files in OGR

# linear features:
ogr2ogr tiger_lines.shp tgr46081.rt1 CompleteChain

# area features:
export PYTHONPATH=/usr/local/lib/python2.5/site-packages
tigerpoly.py tgr46081.rt1 tiger_area.shp

OGR CSV driver: easily indicate column types

You can now write a little csv help file to indicate the columns types to OGR. It works as follows. Suppose you have a foobar.csv file that looks like this:

“ID”,”X”,”Y”,”AREA”,”NAME”
“1”,”1023.5″,”243.56″,”675″,”FOOBAR”

Now write a foobar.csvt file like this one:

“Integer”,”Real”,”Real”,”Integer”,”String”

The driver will then use the types you specified for the csv columns. The types recognized are Integer, Real and String, DateTime, and Date.

Convert KML to CSV (WKT)

First find layers:

ogrinfo -so myfile.kml

Then convert KML to CSV:

ogr2ogr -f CSV out.csv myfile.kml -sql “select *,OGR_GEOM_WKT from myfilelayer”
cat out.csv

Or use the cool online converter: https://geoconverter.hsr.ch


Reading GRASS data through GDAL/OGR support

Example 1: We write out a GRASS raster map to GeoTIFF — this format
includes the coordinates within the file’s metadata:

gdal_translate -of Gtiff /usr/local/share/grassdata/spearfish/PERMANENT/cellhd/soils soilmap.tif

ogr2ogr roadsmap.shp /usr/local/share/grassdata/spearfish/PERMANENT/vector/roads/head

Fast image display with tiling
If you want fast access you might want to try converting e.g. a BIL files to a tiled TIFF, and build overviews. You can build overviews for BIL too, but it can’t be directly tiled:

# add -co “PROFILE=BASELINE” for TIF/TFW
gdal_translate source_bil global30.tif -co “TILED=YES” -co “TFW=YES” -co “PROFILE=BASELINE”
gdaladdo global30.tif 2 4 8 16

GDAL performance problem?
GDAL_CACHEMAX is normally a number of megabytes (default is 10 or so). So something like:
gdal_translate -of GTIFF -co TILED=YES –config GDAL_CACHEMAX 120 madison_1f_01.jpg madison_1f_01.tif
would use a 120MB cache.

GDAL and 1 bit maps
With a trick you can get those:
gdal_merge.py -co NBITS=1 -o dst.tif src.tif

Generate 8 bit maps for Mapserver
gdal_translate -scale in.tif out.tif
Note: As of MapServer 4.4 support has been added for classifying non-8bit raster inputs

Greyscale conversion
A “proper” conversion would involve a colorspace transformation on the RGB image into IHS or something like that, and then taking the intensity. GRASS can do things like that.

Generate an OGC WKT (SRS)
In WKT the ellipsoid is described by two parameters: the semi-major axis and the inverse flattening. For a sphere the flattening is 0 and so the inverse flattening is infinity.

# in the GDAL source code:
cd apps
make testepsg
./testepsg ‘+proj=lcc +lat_1=35 +lat_2=65 +lat_0=52 +lon_0=10 +x_0=4000000 +y_0=2800000 +ellps=GRS80 +units=m’
Validate Succeeds.
WKT[+proj=lcc +lat_1=35 +lat_2=65 +lat_0=52 +lon_0=10 +x_0=4000000 +y_0=2800000 +ellps=GRS80 +units=m] =
PROJCS[“unnamed”,
GEOGCS[“GRS 1980(IUGG, 1980)”,
DATUM[“unknown”,
SPHEROID[“GRS80”,6378137,298.257222101]],
PRIMEM[“Greenwich”,0],
UNIT[“degree”,0.0174532925199433]],
PROJECTION[“Lambert_Conformal_Conic_2SP”],
PARAMETER[“standard_parallel_1”,35],
PARAMETER[“standard_parallel_2”,65],
PARAMETER[“latitude_of_origin”,52],
PARAMETER[“central_meridian”,10],
PARAMETER[“false_easting”,4000000],
PARAMETER[“false_northing”,2800000],
UNIT[“Meter”,1]]

Simplified WKT[+proj=lcc +lat_1=35 +lat_2=65 +lat_0=52 +lon_0=10 +x_0=4000000 +y_0=2800000 +ellps=GRS80 +units=m] =
PROJCS[“unnamed”,
GEOGCS[“GRS 1980(IUGG, 1980)”,
DATUM[“unknown”,
[..]

Extracting spatial subset (subregion)
W N E S
gdal_translate -of GTiff -projwin 636861 5152686 745617 5054047.5 \
p192r28_5t19920809_nn1.tif test1_utm.tif

Fixing broken projection/datum info for raster data
gdal_translate -of HFA -a_srs epsg:32735 /cdrom/173072lsat.img \
173072lsat_fixed.img

# or, using a WKT file
gdal_translate -of HFA -a_srs file.prj /cdrom/173072lsat.img \
173072lsat_fixed.img

Merge various import maps, re-project on the fly and extract spatial subset according to current GRASS region
eval `g.region -g`
gdalwarp -te $w $s $e $n *.TIF \
srtm_cgiar3_italy_north_LL.tif

Export to (limited) TIFF readers such as ArcView, or ImageMagick
Many tools have trouble reading multi-band TIFFs with “band interleaving”, the GDAL output default. Best is to use the INTERLEAVE=PIXEL creation option. Just add to the gdal_translate command line:
-co INTERLEAVE=PIXEL

Inserting metadata (metadata tags)
gdal_translate -outsize 37.5% 37.5% \
-mo TIFFTAG_XRESOLUTION=300 -mo TIFFTAG_YRESOLUTION=300 \
in.tif out.tif

Raster map reprojection (warping)
gdalwarp -t_srs ‘+init=epsg:26591 +towgs84=-225,-65,9’ test1.tif \
test1_gb.tif

Raster map reprojection (warping) maintaining NULL values (sea etc):

gdalwarp -r bilinear -tr 1000 1000 \
-srcnodata “-32768” -dstnodata “-32768” \
-wo “INIT_DEST=-32768” \
-t_srs epsg:32632 italy_LL.tif italy_UTM32.tif

Reprojecting external map to current GRASS location externally
gdalwarp -t_srs “`g.proj -wf`” aster.tif aster_tmerc.tif

Cut out region of interest with gdalwarp (in target coords)
Add to command line (insert values instead of letters of course:
#damn order, differs from -projwin!!
-te W S E N

Merging many small adjacent DEMs into one big map (A)
This needs GDAL compiled with Python and numpy installed:
# if not installed in standard site-packages directory
export PYTHONPATH=/usr/local/lib/python2.5/site-packages
gdal_merge.py -v -o spearfishdem.tif -n “-32768” d*.tif

Merging many small adjacent DEMs into one big map (B)
Even easier, just use gdalwarp:
gdalwarp C_1mX1m/dtm*.tif big.tif
Or just a few tiles:
gdalwarp C_1mX1m/dtm0010[4-5]* big_selection.tif

Merge various map/bands into a RGB composite
gdal_merge.py -of HFA -separate band1.img band2.img band3.img -o out.img

GDAL gdalwarp interpolation comments
Which method -rn, rb, -rc or -rcs should one use for DEM and which for data like e.g. Landsat TM reprojecting?

-tps: Enable use of thin plate spline transformer based on available GCPs.
-rn: Use nearest neighbour resampling (default, fastest algorithm, worst interpolation quality).
-rb: Use bilinear resampling.
-rc: Use cubic resampling.
-rcs: Use cubic spline resampling (slowest algorithm).

FrankW suggests:
I would suggest -rb for DEMs, and one of the cubic kernels for landsat data. Of course, there are various factors that you should take into account. Using -rb (bilinear) for the DEM will perform local averaging of the nearby pixel values in the source. This give reasonable results without introducing any risky “overshoot” effects you might see with cubic that could be disturbing for analysis or visualization in a DEM. The cubic should in theory do better at preserving edges and general visual crispness than using bilinar or nearest neighbour. However, if you are wanting to do analysis with the landsat (such as multispectral classification) I would suggest just using -rn (nearest neighbour) so as to avoid causing odd effects to the spectral values.
Nobody can’t tell you what method should be used in your case. Generally speaking, in the case of upsampling spline and cubic interpolators are more suitable (-rcs and -rc). In the case of downsampling and the same resolution it is completely up to you what method looks better. Just try them all and select the one which is most appropriate for you.

Geocoding with ‘gdal_translate’
FrankW suggests:
As far as I know there is not on-screen method for doing this, but it certainly isn’t too difficult with a little bit of semi-manual work. Open two OpenEV views, one with the unreferenced image, one with the geo-reference base you want to use. Move your cursor over the non-referenced one (let’s call it image1), record (read: write down!) the pixel x,y values. Then look at the same location in image2. Write down the geocoordinate for the pixel. You should have four numbers for each location you want to pin the image to. And so on and so on. Then use gdal_translate to translate image1.tif to image1_georefd.tif but adding the -GCP parameter for each set of coordinates. Like so…

gdal_translate -gcp 1 1 500000 5000000 \
-gcp 200 400 550000 5250000 image1.tif \
image1_geo.tif

Reading HDF ASTER
gdalinfo pg-PR1B0000-2002031402_100_001

To select a channel and warp to UTM (or whatever is inside):
gdalwarp HDF4_SDS:ASTER_L1B:”pg-PR1B0000-2002031402_100_001″:2 aster_2.tif
gdalinfo aster_2.tif

A new bugfix release of GDAL/OGR (now at V1.5.2) was released today. This stable branch bug fix release fixes 37 issues in various drivers.

Just to update you on the GRASS Web statistics development, here the grass.osgeo.org statistics (remember, we have MANY mirror sites):

Month Unique Number Pages Hits Bandwidth
visitors of
visits
Jan 2008 39223 74088 291166 715946 101.23 GB
Feb 2008 38984 74043 218314 623770 107.09 GB
Mar 2008 40674 73389 223666 621816 107.04 GB
Apr 2008 5490 15702 135134 403726 220.87 GB
May 2008 20613 104556 912263 2242942 1442.31 GB

(this includes of course search engine traffic)

It appears that many visitors came back in May who downloaded the long awaited GRASS 6.3.0 release from 23 Apr 2008.

Some outstanding hits for May (views, only grass.osgeo.org):
10095 /grass63/binary/mswindows/native/
3271 /grass63/binary/mswindows/native/WinGRASS-6.3.0-Setup.exe

This points out of obvious need for a portable, in this case also MS-Windows compliant GIS which GRASS 6.3.0 now is! Fetch native winGRASS with installer or GRASS for MacOSX or GRASS for Linux or …