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In this paper we present a suite of new image processing tools for the GRASS Geographic
Information System. New modules are suggested to support improved and semi-automated

geocoding of vertical imagery. The ortho-rectification procedures have been extended to rectify

oblique imagery from digital hand-held cameras for rendering purposes. Multi- and hyperspectral

image analysis has been implemented to derive landuse/landcover maps at subpixel resolution.
Image fusion with the Brovey transform is shown. We finally show high performance SMAP image

classification on an openMosix cluster.

1. Introduction

Remote sensing at various scales plays a
major role in spatio-temporal earth surface
monitoring. A wide range of satellite platforms
as well as film and digital aerial photography
provide a huge data repository. The full integra-
tion of remote sensing tools into a full Geo-
graphic Information System (GIS) provides a
major advance over stand-alone solutions. The
Open Source/Free Software GIS GRASS
(http://grass.itc.it) has had significant image
processing capabilities for years, and is now
chosen as the framework for further enhance-
ment through implementation of the image
processing toolbox. The existing methods have
been extended by integrating new geocoding
algorithms for semi-automated registration of
aerial imagery and oblique images from hand-
held digital cameras. An image fusion algorithm
for imagery from satellites or digital aerial
cameras was included. Spectral unmixing as
method to derive thematic maps at subpixel
accuracy was integrated for multi- and hyper-
spectral data. Finally the usage of a powerful
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image classification on an openMosix based
cluster is show in this paper (Figure 1).

2. Image Registration

While image registration support has been
present in GRASS (Neteler and Mitasova,
2004) for many years, there have been some
restrictions in the flexibility of the provided
tools. A basic problem is the time consuming
manual identification of ground control points
(GCPs). To overcome this problem, two new
methods have been implemented which address
the GCP identification within time-distant
images as well as the semi-automatisation of
the GCPs search.

2.1 Image Registration by Homography

Image registration of heterogeneous data
sources such as historical images and present-
day orthophotos often turns out to be complicated
due to differences in survey time, camera type
and the evolution of the observed landscape. The
search of ground control points becomes very
time consuming and may be even impossible for
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Figure 1: New image processing tools integrated into GRASS GIS
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some part of the image scene. The common way
of registering images is to find corresponding
points (GCPs). An alternative method is the
selection of corresponding lines. Linear struc-
tures are more easily identifiable by human eye
than point structures (Chambers et al., 1983). In
case of image registration of historical images,
substantial changes in the landuse/landcover
may render point identification to be impossible
while linear structures such as bridges, streets,
and railroads still can be selected. A combined
method has been implemented in the new
modules i./inespoints which permits identifi-
cation of common ground control points in
combination with corresponding lines. A sub-
sequent run of the new module i.homography
allows for homography based image rectifica-
tion (Grasso, 2004). Homography is a simple
linear projective transformation of four known
points in one planar system (x, y) to another
planar reference system (x’, y'). Thus, this
transformation is applicable only to images
covering flat terrain. In the new i.linespoints,
the transformation, which was originally
developed for points only, has been extended
to homogeneous equations which describe a
line (¢, u). To unify the two techniques, we
developed a method which gives a different
weight to points and lines (extending the
approach of Murino et al., 2002) according to
a weighting parameter ¢. To minimize the
transformation error, the Brent minimization
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algorithm was used to optimize the parameter
c. Another related method to calculate the
mean error was implemented in order to
provide this value to the user for both points
and lines types. Additionally, a test set of
independent points can be specified and
transformed to verify the overall quality of the
rectification for other parts of the image scene.
Figure 2 illustrates the selection of correspond-
ing lines in very heterogeneous images with
i.linespoints. The subsequent use of i.homo-
graphy rectifies the image to the target GRASS
location.

2.2 Semi-Automated Image Registration by Fast
Fourier Transform

The classical image registration is done by
searching a certain number of corresponding
points (ground control points, GCPs) between
two images. One image is selected as reference
image. Corresponding points are then selected
to define a transformation function, usually a
polynomial, to rectify the unregistered image. In
current GRASS versions, these GCPs have to be
identified manually. We propose a new module
i.coregister which provides an alternative,
semi-automated approach to find corresponding
points in two overlapping images (Miori, 2004).
GCPs are found by maximising the cross-
correlation within master-slave search windows
between the two images. The cross-correlation
is calculated by a frequency analysis of the
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Fourier transformed search windows. In order
to obtain high registration accuracy, first two
regions are roughly indicated on screen by
mouse, with very general requirements to image
dimensions and overlapping zone characteris-
tics. After determining the size of these search
windows (S , Figure 3), the search window jump
distance (Sj, offset in pixel when moving the
search window) and the search window border
S b minimum distance to keep from border, set
to § /2) the algorithm searches for the shift
maximising the cross-correlation between the
two search windows. Let / ! (x, y) and I2 x, y
be the current master and slave search windows
respectively. The cross-correlation is defined
as

H(t,t,) = fl (I, (x+ 1,y +t,)du,

S, Equation 1

where S is the search region and 7, and 7,
represent the horizontal and vertical shifts
respectively. The convolution theorem allows
us to compute the cross-correlation in terms of
the Fourier Transforms of /, and 7, :

H(t,) =37 () S

(,)), Equation 2

where J indicates the Fourier Transform and

R

maximum correlation value, (¢,,1,) = max H (t ,t,),
o)

the complex conjugate. The position of the
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Figure 2: Image registration with homography:
Selecting corresponding lines with i.linespoints
(left: NHAP, right SPOT MSS)
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determines the position of the GCP for the
current pair of master/slave search windows.
The set of GCPs is saved into the common
GRASS POINTS structure for later use with
i.rectify. Figure 4 shows an example for the
automated search of GCPs by cross-correlation
in a user-defined search region. The list of GCPs
generated by i.coregister can optionally be con-
verted into the 3D POINTS structure of i.ortho.
photo by a new script i.pointsfile2orthopoints-
file.sh which merges the POINTS file with a
user specified camera file and elevations which
are automatically queried from a DEM.

2.3 Image Registration of Oblique Aerial Photos
from Digital Hand-Held Cameras

A new application of the i.ortho.photo
algorithm is proposed for the registration of
oblique imagery as produced by handheld
digital cameras (Michelazzi, 2004). The under-
lying idea is to improve the visual perception
of perspective rendering based on orthophotos.
While oblique rendering using a digital elevation
model and orthophotos usually suffers from
perspective displacements, we show that digital
photos taken by cheap digital cameras can be
geocoded and used to improve the visual per-
ception. The existing ortho-rectification algo-
rithm has been tested for
0 usage of digital images which are lacking

fiducial marks;
0 estimation of the focal length of digital hand-

held cameras;

search window dimension Sd_

////

search reglon Sy

///

search
jump SJ'

/

Figure 3: Definition of search windows in FFT based

image correlation (i.coregister)
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0 estimation of exterior orientation of oblique
photographs taken by a digital hand-held
camera.

Most digital hand-held cameras create photos
in JPEG format with EXIF (Exchangeable Image
File) extension which stores metadata of the
camera. Using a JHEAD EXIF JPEG camera
setting parser (JHEAD EXIF JPEG camera
setting parser, http://www.sentex.net/~mwandel/
jhead/) camera parameters can be extracted,
such as shutter speed, the distance the camera
was focused at, focal length and the calculated
35 mm equivalent focal length, image size and
resolution, the time and date the picture was
taken, as well as the camera maker and model.
The estimation of the parameters of the exterior
orientation is done using the “Space Resection
by Collinearity”” method following the approach
of Wolf, 1983. Space Resection is a method of
determining the six elements of exterior orien-
tation of a single tilted photograph. Based on
least squares techniques the most probable
values for the six elements are determined. In
order to rectify an oblique image with i.ortho.
photo, the following modifications to the
standard procedure have to be applied:

0 the focal length is taken from the JHEAD
output;

0 the number of fiducial marks is set to four,
their positions are centred on each side of
the photo. To get the position in millimetres,
the relation between the longer and the
shorter side of the photo is considered (in
case of a non-quadratic photo), as well as the
resolution versus the photo size in pixels;

0 initial parameters for the exterior orientation
have to be estimated and entered into the
related screen of i.ortho.photo:

o the x, y, z coordinates of the camera
position can be easily estimated from
DTM with d.what.rast or the “What’s
here” functionality of nviz,

0 the orientation angles (omega, phi, kappa)
of the camera can be estimated with
d.measure;

0 the ground control points are identified as
usual. However, the user has to take care to
select appropriate points in both the oblique
photo and the map/orthophoto reference
(usually object corners).

Finally the ortho-rectification is performed.

A detailed report of the parameter estimation

can be obtained by recompilation of i.ortho.

photo with debug option enabled. Figure 5 shows
an example for the registration of an oblique
photo.

Figure 4: Automated search of GCPs by cross-correlation in a user-defined search region (i.coregister)
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3. New Image Classification Tools with
Subpixel Accuracy

In this section of the paper, we present two
methods for analysing multi- and hyperspectral
data. Hyperspectral sensors divide the wave-
band-range of interest into hundreds of conti-
guous narrow bands. This spectral sampling is
then subject to signature analysis, usually based
on a spectral library containing a large set of
laboratory spectra or on geometrical search for
pure spectra in the image scene itself. The data in
each pixel can be understood as a cube of two
spatial dimensions and a third spectral dimen-
sion, the wavelength. One or many objects are
covered by a pixel, resulting in mostly mixed
spectral signals of objects within each pixel. A
common model to describe these mixed signals
is assumption of linear mixing (linear mixture
model, LMM). The methods of spectral angle
mapping and spectral unmixing decompose the
mixed signal into a set of known spectra (end-
members) from the spectral library. This results
in a classifier with subpixel accuracy as for each
endmember an abundance map is produced.
Difficulties arise from various factors such as
dependence on sun angle, atmospheric absorption
and scattering, reflections and shadowing, as
well as spatial and spectral aberrations in the
sensor (Shaw and Manolakis, 2002).

3.1 Spectral Angle Mapping

Spectral angle mapping has been imple-
mented in the new module i.spectral.sam (Neteler,
1999). For a set of bands the algorithm is calcu-
lating the angles to a set of object spectra which
are read from a spectral library. SAM is invariant
to unknown multiplicative scalings and, con-
sequently, is invariant to unknown deviations
that may arise from different illumination and
angle orientation (Keshava and Mustard, 2002).
Details are explained in the next section, see
Equation 12.

3.2 Spectral Unmixing

Spectral unmixing for landuse/landcover
mapping at subpixel precision has been imple-
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mented in the module i.spectral.unmix (Neteler,
1999). Multi- and hyperspectral data can be
analysed against a spectral library (e.g. USGS
Digital Spectral Library, http://speclab.cr.usgs.
gov/spectral-lib.html; ASTER spectral library,
http://speclib.jpl.nasa.gov). The module generates
as many abundance maps as object spectra are
used. The implemented algorithm assumes the
linear mixture of object spectra (also called
“endmembers”) within each pixel. The general
case is a set of linear equations with m equa-
tions and n endmember spectra (Shimabukuro
and Adams, 1991). The number of equations
m is identical to the number of bands of the
sensor. The fractions of endmembers represent
the percentage of landuse/landcover within the
actual pixel. The number of endmember which
can be extracted is as high as the number of
bands. Written as a general system of equations:

a x, +a. x, +..+a, x =b
1171 Inn 1

122
Ay Xy + AypXy + o+ Ay X = b2

: Equation 3
a x +a x, +. +a x = bn

The rows correspond to the bands (m bands)
and the columns to the endmember spectra (n
endmembers). The constants a,. represent the
reflection value in the ith band (i in 1, ... ,m)
of the j, object (j in 1, ..., n). The percentage
of an endmember fraction within a pixel is X,
while b, describes the overall pixel value of the
ith band. This can be rewritten as:

11 12 In X b,
Ay Ay, .. 4, X, b,
aml am2 o amn xn bm
Equation 4
and simplified to:
Ax =b. Equation 5

Here A indicates the matrix of reference
spectra, the vector x the percentage fraction of
spatial distribution within the pixel, and the vector
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b the pixel values in the image scene. To solve
this system of equations, it is required that m n ,
which means that the number of objects to be
analysed must be lower or as much as the number
of bands available. In case of m=n the matrix A
is quadratic. An additional condition is that the
equations should be linearly independent. The
unknown vector x can be calculated as:
x=A"'b. Equation 6
But to get physically meaningful results, we
must enforce two boundary conditions: First,
the sum of all fractions must be 100% (full
additivity, assuming the case that at least one
reference spectrum is found in each pixel):

x. =1.

Equation 7
1/

M=

Secondly, the area fractions must be zero or
positive (non-negativity):
x; 0 for all j. Equation 8
The ideal solution of the rewritten Equation
6 is zero:
Alb-x=0, Equation 9
but due to limitations in the accuracy of the
reference spectra, limitations in the assumption
of linear mixture and natural deviations of the
object spectra from the reference spectra, the
Equation 6 cannot be solved exactly. To over-
come this problem, an error term is introduced
to cover the unidentifiable object spectra and
noise:
Alb-x==e Equation 10
Because vector x and error € are unknown,
the equation can be solved by minimizing the

error through least-squares. The error function
F to be minimised can be written as:

F=2£?.

i=11

Equation 11
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With minimisation of the error function F,
the vector x which represents the percentage
fraction of the reference spectra in the actual
pixel can be calculated from Equation 5. The
methods have been implemented to calculate
the area fractions x; while minimising the error
and respecting the two boundary conditions as
given in Equation 7 and Equation 8. It is recom-
mended to beforehand test the matrix of re-
ference spectra A for linear dependencies using
Spectral Angle Mapping (SAM). In this case the
selected spectra should be exchanged from the
matrix to improve the spectral separability. This
is obtained by calculating the angle @ between
column vector a, and a,, in the matrix, i.e.
between individual reference spectra (Sohn and

McCoy, 1997):

T
a.a.
1 J J+l

Ha_i H2 ’ ”a_/+1” 2 ’
where IIaII2 is the Euclidean norm of a.

The length of the vectors represents the
signal power, i.e. the reflectivity of the observed

¢ =cos Equation 12

object surface. If the spectra are too close, i.e.
the angle @ is too small, a spectral separation
cannot be performed. In this case the vectors
are linearly dependent. Less noise and a higher
number of bands minimises the problem. A
mathematical problem arises from the inversion
of matrix A (Equation 6 and Equation 9). Due
to limits in the sensor signal and other noise,
only ill conditioned matrices are expected;
classical matrix inversion methods such as
Gauss elimination or LR decomposition will
fail here. The singular value decomposition
(SVD) proposed by some authors is also in-
appropriate as it does not fulfill the second
boundary condition (Equation 8). While en-
forcing the first (sum of areas be 100%) and the
second (all area percentages within the positive
range, compare Equation 8) boundary condi-
tions, the implemented algorithm iteratively
minimses the error & (constraint least square
method, Shimabukuro and Adams, 1991). The
solution of the equation is projected from the
undesired negative solution space to the boun-
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dary of the desired positive solution space (Sohn
and McCoy, 1997; Hobbs, 1996:8).

To solve the set of equations, the gradient of
the error function F' (Equation 11) is considered.
In a multidimensional feature space the function
F is a hyper-parabola. A three-dimensional case
for two spectral bands is shown in Figure 7. The
error surface for this example is calculated as:

2
F =|(Ax-b)|, = (Ax - b)Y (Ax -b)
Equation 13

The numerically optimal solution x would
be the minimum of the error function, but it
violates the boundary conditions. In the pro-
posed algorithm, a vector x is initialized to a
seed value. The set of seed values initially defines

an equivalent area fraction for each endmember

Figure 5: Perspective rendering of an oblique photo
taken by a digital hand-held camera
(registered by i.ortho.photo), the photo is draped
over an orthophoto

Figure 6: Permitted (bright) and undesired (dark)
negative solution space of a two-dimensional

(a) and of a three-dimensional spectral unmixing
(b) with constraints (after Sohn and McCoy, 1997)
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and these fractions are put into Equation 9.
Using the approach of steepest descent the
calculated error can be minimised. To do so, the
values of the vector x” are shifted by the small
value u in the direction of decreasing slope of
the error function. The gradient at position £ on
the error surface F' is calculated as (Harteneck
1998, pers. comm.):
aF

o 2AT (Ax'(k) - b)

Equation 14
» quation

The new vector x(k+1) is calculated for an
increment U as:

X' (k+1) = x’ (k) - u+ 2AT (Ax(k) - b)
Equation 15

In the next iteration the new vector x will
be inserted again into Equation 9, which deter-
mines a new error value. This will lead to a
corrected vector x". We finish the loop when we
leave the positive solution space or when we
reach the minimum of the error function. The

Error

projected
subspace 0- 1009

Figure 7: Example for error function F, as calculated
for a pixel in spectral unmixing of two bands.
The figure depicts the case of a numerically correct
solution for fraction x in the negative range.
However, this minimum solution is outside the
boundary conditions. The physically desired solution
x lays within the range of 0% to 100% (triangle on
error surface) and is found by projecting into the
positive range while keeping x” as close as possible

to error minimum at x
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iteration is performed until no further significant
change appears in the error minimisation. In
Figure 6, the search for the optimal solution can
be seen as moving towards the minimum. To
spectrally unmix an image scene, this method
must be applied to all pixels.

The spectral unmixing is usually based on a
spectral library containing a large set of labora-
tory spectra or is done with a geometrical search
for “pure” spectra in the image scene. A geo-
metrical search can be done by various methods,
such as using Principal Component Analysis
(PCA). Endmembers (“pure” spectra) are
located in the extremities of the PCA-trans-
formed multidimensional pixel cloud. They can
be extracted interactively with XGOBI software
(Swayne et al., 1998). This software supports
interprocess communication (IPC), which
enables the user to run several program sessions
in parallel while the sessions maintain commu-
nication. The user can interactively query trans-
formed and untransformed data in either session
for the identification of endmembers, pixel
map coordinates are indicated in all XGOBI
windows (Figure 8). From these coordinates
pure pixels can be easily extracted and used as
endmembers. From the created endmember file
(either from a spectral library or from geometrical
search within the image scene) the spectral
unmixing is performed. The result is a set of end-
member abundance maps describing pixel wise
the area percentage of each endmember. The
algorithm is implemented in i.spectral.unmix.

4. Image Fusion with Brovey Transform

In remote sensing systems parts of the
spectrum are observed in different portions to
minimise the impact of noise. While multispec-
tral sensors provide high spectral resolution at
lower spatial resolution, panchromatic sensors
collect data at high spatial resolution and lower
spectral resolution. Numerous algorithms have
been proposed to combine these data with best
characteristics of both sensor types. One of
these algorithms, the Brovey transform, has
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been selected for script based implementation
in GRASS. The Brovey transform is a colour
transform which normalises three input bands
and multiplies the result with a higher resolution
band (panchromatic) (Roller and Cox, 1980;
Pohl and van Genderen, 1998):

DN,

DNfused = ) DNpan
DN, +DN,,+DN,

Equation 16

The Brovey algorithm holds an intermediate
position between band arithmetic and compo-
nent substitution methods. A new script i.fusion.
brovey has been integrated to GRASS to support
PAN sharpening of multispectral satellite such
as that from LANDSAT-7, Quickbird and SPOT.
The algorithm performs image fusion of the
high resolution panchromatic channel with the
multispectral channels at lower resolution. The
resulting pseudo-RGB channels are saved at the
high resolution of the panchromatic channel and
have a near-natural colour table. An example of
LANDSAT-7 fusion is shown in Figure 9.

5. High Performance Image Classifi-
cation on OpenMosix Cluster

A high performance solution for image
classification with GRASS at meso-scale but
with high spatial resolution was developed. A
script-based approach to run the standard,
unmodified GRASS on an GNU/Linux based
openMosix cluster (20 PCs, 40 CPUs) has been
implemented to classify multispectral colour
orthophotos with SMAP algorithm (Sequential
maximum a posteriori estimation, Bouman and
Shapiro, 1994; Schowengerdt, 1997). openMosix
(http://www.openmosix.org, published under
GPL) is a Linux kernel extension for single
system image clustering. Once openMosix is
installed and the cluster nodes are connected
by a local network, the nodes in the cluster
communicate to optimally distribute the work-
load. Processes originating from any node can
migrate to any other node if the current node is
too busy compared to others. openMosix con-
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tinuously attempts to optimise the resource
allocation. New nodes can be added while the
cluster is running and the cluster will auto-
matically begin to use the new resources. Due
to the distributed computing concept of open-
Mosix, the cluster behaves similar to a sym-
metric multi-processor (SMP). In order to run
GRASS in parallel without code modifications,
a multiple sequential approach was used. Within
the job launch script the GRASS environment
variables are defined. It is important to run
each job in its own mapset to avoid one job
influencing the settings of another job. The de-
finition section is followed by the GRASS
analysis (in our case the SMAP classification).
To finish, the launch script removes the tem-
porary files and copies the resulting classifi-
cation map to the PERMANENT mapset. It
uses UNIX commands as the original g.copy
command may fail due to race conditions (in
this case the concurrent writing of files) with
other jobs copying results to the PERMANENT
mapset at the same time. The approach was

@ tested on a large study area, the Autonomous
Province of Trento (Italy), which is of appro-
ximately 6200 km? area. This area is covered
by 280 RGB orthophotos at a resolution of one
meter per pixel (Volo Italia 2000, CGR Parma).
In tests, the required time to analyse these
orthophotos at the given resolution was reduced
from estimated 110 days on a single CPU to 5
days on the ITC-irst openMosix cluster.
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